John Schilling on 38 North provides an overview of cyberwarfare with North Korea, and how it might be most effective:
A successful attack, then, will likely be aimed at something other than the missile itself. Note that the highly-publicized “Stuxnet” attack did not target Iran’s (probably nonexistent) nuclear weapons, but the uranium enrichment facility that would be used to manufacture them. North Korea positively brags about its computer-controlled milling machines; these can, in principle, be hacked to produce parts that aren’t exactly what the designer intended. Ovens used to temper and anneal alloys might also be computer-controlled, and subtle changes to the temperature profile can lead to parts that are visually perfect but will fail under load. There are numerous possibilities, and while most will not be practical to exploit, perhaps some will be vulnerable. North Korea’s factories might, perhaps, be “hacked” to produce defective missiles.
So how about that missile that blew a few days ago?
What we would not expect to see, from any plausible cyberattack, would be missiles exploding on the launch pad. The parts of the missile with the potential to explode, are most likely not controlled by software. And if we could somehow tailor built-in defects in the hardware that precisely, we wouldn’t want to. If the missile explodes within sight of North Korean engineers and cameras, they’ll have too many clues as to what went wrong. Similarly, while there are plausible attacks that could result in a defective guidance system or an improperly-calculated trajectory, anyone delivering such an attack would prefer the error be small enough that the missile is well out of sight before it goes visibly off course.
If we are seeing North Korean missiles fail very early in flight, as has been the case in two recent incidents, we should probably be looking for something other than a cyberattack. And we don’t have to look far. Consider the Vanguard rocket, intended to be America’s first satellite launch vehicle, which on its first flight ascended four feet, fell back to the launch pad and exploded—and then exploded six more times in seven launches over the course of a year. The first Atlas ICBM reached 10,000 feet before tumbling and exploding in mid-air. The next six flights suffered four more failures, though at least some of those flew far enough that the explosions weren’t visible to the crowds of spectators. The Titan ICBM, intended as a counter to Atlas’s unreliability, destroyed the launch pad on its first two tests, succeeded on the third, and then went on to a string of downrange failures.