Dad Was Sort Of Underweight

Ever wonder how the solar system got its start? (I’m getting some odd visceral reactions as I look out at some snow coming down; it just doesn’t seem real to be thinking about the beginning of the solar system while snow is making our freeways slippery.) University of Minnesota researcher Yong-Zhong Qian has been doing some work on the subject, as reported by the College of Science and Engineering at the University of Minnesota:

About 4.6 billion years ago, a cloud of gas and dust that eventually formed our solar system was disturbed. The ensuing gravitational collapse formed the proto-Sun with a surrounding disc where the planets were born. A supernova—a star exploding at the end of its life-cycle—would have enough energy to compress such a gas cloud. Yet there was no conclusive evidence to support this theory. In addition, the nature of the triggering supernova remained elusive.

Qian and his collaborators decided to focus on short-lived nuclei present in the early solar system. Due to their short lifetimes, these nuclei could only have come from the triggering supernova. Their abundances in the early solar system have been inferred from their decay products in meteorites. As the debris from the formation of the solar system, meteorites are comparable to the leftover bricks and mortar in a construction site. They tell us what the solar system is made of and in particular, what short-lived nuclei the triggering supernova provided.

“This is the forensic evidence we need to help us explain how the solar system was formed,” Qian said. “It points to a low-mass supernova as the trigger.”

Qian is an expert on the formation of nuclei in supernovae. His previous research has focused on the various mechanisms by which this occurs in supernovae of different masses. His team includes the lead author of the paper, Projjwal Banerjee, who is a former Ph.D. student and postdoctoral research associate, and longtime collaborators Alexander Heger of Monash University, Australia, and Wick Haxton of the University of California, Berkeley. Qian and Banerjee realized that previous efforts in studying the formation of the solar system were focused on a high-mass supernova trigger, which would have left behind a set of nuclear fingerprints that are not present in the meteoric record.

Bookmark the permalink.

About Hue White

Former BBS operator; software engineer; cat lackey.

Comments are closed.